Intracellular Na+ kinetically interferes with the rotation of the Na(+)-driven flagellar motors of Vibrio alginolyticus.
نویسندگان
چکیده
To understand the mechanism of Na+ movement through the force-generating units of the Na(+)-driven flagellar motors of Vibrio alginolyticus, the effect of intracellular Na+ concentration on motor rotation was investigated. Control cells containing about 50 mM Na+ showed good motility even at 10 mM Na+ in the medium, i.e. in the absence of an inwardly directed Na+ gradient. In contrast, Na(+)-loaded cells containing about 400 mM Na+ showed very poor motility at 500 mM Na+ in the medium, i.e. even in the presence of an inwardly directed Na+ gradient. The membrane potential of the cells, which is a major driving force for the motor under these conditions, was not detectably altered, and consistently with this, Na(+)-coupled sucrose transport was only partly reduced in the Na(+)-loaded cells. Motility of the Na(+)-loaded cells was restored by decreasing the intracellular Na+ concentration, and the rate of restoration of motility correlated with the rate of the Na+ decrease. These results indicate that the absolute concentration of the intracellular Na+ is a determinant of the rotation rate of the Na(+)-driven flagellar motors of V. alginolyticus. A simple explanation for this phenomenon is that the force-generating unit of the motor has an intracellular Na(+)-binding site, at which the intracellular Na+ kinetically interferes with the rate of Na+ influx for motor rotation.
منابع مشابه
Roles of charged residues in the C-terminal region of PomA, a stator component of the Na+-driven flagellar motor.
Bacterial flagellar motors use specific ion gradients to drive their rotation. It has been suggested that the electrostatic interactions between charged residues of the stator and rotor proteins are important for rotation in Escherichia coli. Mutational studies have indicated that the Na(+)-driven motor of Vibrio alginolyticus may incorporate interactions similar to those of the E. coli motor, ...
متن کاملThe bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species.
The bacterial flagellar motor is an elaborate molecular machine that converts ion-motive force into mechanical force (rotation). One of its remarkable features is its swift switching of the rotational direction or speed upon binding of the response regulator phospho-CheY, which causes the changes in swimming that achieve chemotaxis. Vibrio alginolyticus has dual flagellar systems: the Na(+)-dri...
متن کاملIsolation of the polar and lateral flagellum-defective mutants in Vibrio alginolyticus and identification of their flagellar driving energy sources.
Vibrio alginolyticus has two types of flagella (polar and lateral) in one cell. We isolated mutants with only a polar flagellum (Pof+ Laf-) or only lateral flagella (Pof- Laf+). Using these mutants, we demonstrated that the energy sources of the lateral and polar flagellar motors in V. alginolyticus are H+ and Na+ motive forces, respectively, as in the related species V. parahaemolyticus.
متن کاملSodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors.
The bacterial flagellar motor is driven by the electrochemical potential of specific ions, H(+) or Na(+). The motor consists of a rotor and stator, and their interaction generates rotation. The stator, which is composed of PomA and PomB in the Na(+) motor of Vibrio alginolyticus, is thought to be a torque generator converting the energy of ion flux into mechanical power. We found that specific ...
متن کاملIsolation of basal bodies with C-ring components from the Na+-driven flagellar motor of Vibrio alginolyticus.
To investigate the Na(+)-driven flagellar motor of Vibrio alginolyticus, we attempted to isolate its C-ring structure. FliG but not FliM copurified with the basal bodies. FliM proteins may be easily dissociated from the basal body. We could detect FliG on the MS ring surface of the basal bodies.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 33 شماره
صفحات -
تاریخ انتشار 1990